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In this paper the conditions for D-posets to become orthoalgebras, orthomodular
posets, orthomodular lattices, MV-algebras, and Boolean algebras are presented.
Also some properties of observables are investigated. It is proved that any two
regular observables in an atomic s-complete Boolean D-poset have a joint
observable.

1. INTRODUCTION

Based on the study of unsharp logics, fuzzy systems, and quantum
mechanical systems, new algebraic structures have been proposed as their
models. In weak orthoalgebras introduced by Giuntini and Greuling [10] and
in effect algebras introduced by Foulis and Bennet [8] a primary operation
is a partially defined sum. In difference posets (D-posets) defined by Kôpka
and Chovanec [12] a primary operation is a partially defined difference.

In the first part of this paper we describe some algebraic structures in
terms of difference posets. We will study some properties of D-homomor-
phisms, especially observables, and we will characterize their ranges from
the point of view of substructures of D-posets. Finally, we prove that any two
observables in an atomic s-complete Boolean D-poset have a joint observable.

2. D-POSETS AND SOME ALGEBRAIC STRUCTURES

Let (3, #) be a nonempty partially ordered set (poset). Let * be a
partial binary operation on 3 such that b * a is defined if and only if a #
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b. Then * is called a difference on 3 if the following conditions are satisfied:

(D1) b * a # b.
(D2) b * (b * a) 5 a.
(D3) If a # b # c, then c * b # c * a and (c * a) * (c * b) 5

b * a.

In this article we investigate the bounded posets. A poset (3, #) that
possesses the greatest element 13 with a difference on 3 is said to be a D-
poset (difference poset). The properties of D-posets are treated in many
articles. See, for example, refs. 3 and 12.

In the following we need the next assertion.

Proposition 2.1. Let 3 be a D-poset. Let a, b, c, P 3, a, # c, b # c.
If there exists a supremum a ∨ b in 3, then there exists the infimum (c *
a) ∧ (c * b) in 3 and c * (a ∨ b) 5 (c * a) ∧ (c * b).

Proof. The inequalities a # a ∨ b # c and b # a ∨ b # c imply

c * (a ∨ b) # c * a, c * (a ∨ b) # c * b

Let d P 3, d # c * a, d # c * b. Then

a 5 c * (c * a) # c * d, b 5 c * (c * b) # c * d

Therefore a ∨ b # c * d # c and d # c * (a ∨ b). n

An orthoalgebra 2 [7, 9] is a set containing two special elements 0, 1
and equipped with a partially defined binary operation % subject to the
following conditions for all a, b, c P 2:

(OA1) If a % b is defined, then b % a is defined and a % b 5 b %
a (commutativity).

(OA2) If b % c is defined and a % (b % c) is defined, then a % b is
defined, (a % b) % c is defined, and a % (b % c) 5 (a % b)
% c (associativity).

(OA3) For any a P 2 there exists a unique b P 2 such that a % b is
defined and a % b 5 1 (orthocomplementation).

(OA4) If a % a is defined, then a 5 0 (consistency).

The partial ordering on 2 is defined as follows: a # b if and only if
there exists c P 2 such that a % c is defined and a % c 5 b. Then 0 # a #
1 holds for all a P 2. The unique element b P 2 such that a % b 5 1 is
denoted by a8 and is called the orthocomplement of a; moreover, a % b is
defined if and only if a # b8.

The difference on an orthoalgebra is defined by
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b * a 5 (a % b8)8 for a, b P 2, a # b

and thus every orthoalgebra forms a D-poset [12]. Even though we can define
a partial binary operation % on any D-poset 3 by

a % b 5: 13 * ((13 * a) * b) 5 13 * ((13 * b) * a)

for a, b P 3, a # 13 * b, 3 need not be an orthoalgebra.
We say that a D-poset is regular [14] if it satisfies the following condition:

(R) If a P 3 and a # 13 * a, then a 5 03.

The condition (R) of a D-poset implies the following assertion.

Proposition 2.2. Let 3 be a regular D-poset. Then a ∨ a8 5 13 and a ∧
a8 5 03 for all a P 3, where a8 :5 13 * a.

Proof. Let a, a8 # c. Put d 5 c * a and b 5 a8 * d. Then d # a8 #
c and b # a8 # c. Now, b 5 (13 * a) * (c * a) 5 13 * c # 13 * b.
From the regularity it follows that b 5 03. Thus d 5 a8 5 13 * a, i.e., c *
a 5 13 * a, which implies c 5 13. Finally, we have 03 5 183 5 (a ∨ a8)8
5 a8 ∧ a. n

The corollary of the previous proposition is the following assertion: If
a D-poset 3 is regular and a # b8 (which is equivalent to b # a8), then a ∧
b 5 03.

From the above, the following theorem is true:

Theorem 2.3. A D-poset 3 is an orthoalgebra if and only if 3 is a
regular D-poset.

An orthomodular poset [15, 18] is a partially ordered set (+, #) with
the least and greatest elements 0, 1, endowed with a unary operation 8, so-
called orthocomplementation, such that:

(OMP1) a9 5 a for any a P +.
(OMP2) a # b implies b8 # a8.
(OMP3) a # b8 implies a ∨ b P +.
(OMP4) a ∨ a8 5 1 for any a P +.
(OMP5) a # b implies b 5 a ∨ (b ∧ a8).

Any orthomodular poset can be regarded as an orthoalgebra by defining
a % b :5 a ∨ b, precisely, in the case a # b. Conversely, an orthoalgebra
2 is an orthomodular poset if a ∨ b P 2 whenever a # b8 and a % b 5 a ∨
b [9].

Any orthomodular poset can be organized as a D-poset, defining b *
a 5 b ∧ a8, for a # b. Thus a regular D-poset 3 is an orthomodular poset
if and only if for every a, b P 3, a # b8, their supremum a ∨ b exists in 3.
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Now we give a sufficient and necessary condition for the difference
operation on a D-poset 3 to become an orthomodular poset.

Theorem 2.4. A D-poset 3 is an orthomodular poset if and only if the
following condition is satisfied.

(SR) If a, b P 3 such that a # b8 and a, b # c, then b # c * a (or
equivalently a # c * b).

Proof. Let 3 be an orthomodular poset. If a, b, c P 3 such that a #
b8 and a, b # c, then from the orthomodularity we have b8 5 a ∨ (b8 ∧ a8).
Then b 5 a8 ∧ (a ∨ b) # a8 ∧ c 5 c * a.

It is easy to see that the regularity follows from the condition (SR). Let
a # 13 * b. Then a % b 5 13 * ((13 * b) * a) is an upper bound of the
elements a, b. If a, b # c, then by (SR), b # c * a, and so

(13 * c) 5 ((13 * a) * (c * a)) 5 (13 * (c * a)) * a # (13 * b) * a

Therefore,

13 * ((13 * b) * a) # 13 * (13 * c) 5 c

Thus a % b 5 a ∨ b. n

A D-poset 3 which is also a lattice with respect to the order relation
# is called a D-lattice. Then there is a total binary operation 2 on 3, b 2
a 5: b * (a ∧ b), such that the following properties hold:

(DL1) a 2 03 5 a for any a P 3.
(DL2) a, b P 3, a # b implies c 2 b # c 2 a for any c P 3.
(DL3) a 2 (a 2 b) 5 b 2 (b 2 a) for every a, b P 3.
(DL4) a # b # c implies (c 2 a) 2 (c 2 b) 5 b 2 a.

Conversely, if 3 is a poset with the least element 03 and the greatest
element 13 and 2 is a binary operation on 3 with the properties (DL1)–(DL4),
then 3 is a D-lattice [3].

Orthomodular poset (+, #, 0, 1, 8) is called an orthomodular lattice if
it is a lattice with respect to #.

Any orthomodular lattice + is a D-lattice where b 2 a 5 b ∧ (a ∧ b)8
for every a, b P +. A D-lattice is not an orthomodular lattice in general.

Theorem 2.5. A D-lattice is an orthomodular lattice if and only if it
is regular.

Proof. It is clear that every orthomodular lattice is a regular D-lattice.
Let a D-lattice 3 be regular. It suffices to prove that for a, b P 3, a #

b8, a 1 b :5 13 2 ((13 2 b) 2 a) 5 a ∨ b.
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Evidently 13 2 ((13 2 b) 2 a) $ a ∨ b $ a, b. By Proposition 2.1
we have

(13 2 ((13 2 b) 2 a)) 2 (a ∨ b)

5 ((13 2 ((13 2 b) 2 a)) 2 b) ∧ ((13 2 ((13 2 a) 2 b)) 2 a)

5 ((13 2 b) 2 ((13 2 b) 2 a)) ∧ ((13 2 a) 2 ((13 2 a) 2 b))

5 a ∧ b

Then (by Proposition 2.2) a 1 b 5 13 2 ((13 2 b) 2 a) 5 a ∨ b. n

A poset 3 with the least element 03 and the greatest element 13 is said
to be a Boolean D-poset if there is a binary operation 2 on 3 satisfying the
conditions (DL1)–(DL3) and the following condition:

(BD4) (c 2 b) 2 a 5 (c 2 a) 2 b for every a, b, c P 3.

We say that two elements a, b of a D-poset 3 are compatible, and write
a } b, if there exist elements c, d P 3, d # a # c, d # b # c, such that
c * a 5 b * d (or equivalently c * b 5 a * d ). This notion of compatibility
is equivalent to the standard definitions of compatibility in the orthomodular
posets. We can characterize every Boolean D-poset as a D-lattice of pairwise
compatible elements. Also, we know that every Boolean D-poset is an MV-
algebra and, conversely, every MV-algebra is a Boolean D-poset [3].

Theorem 2.6. A Boolean D-poset 3 is a Boolean algebra if and only if
3 is regular.

Proof. The proof of the previous assertion follows from the fact that in
a regular MV-algebra, a ∨ a8 5 1 for every a P 3 [1]. n

3. D-HOMOMORPHISMS OF D-POSETS

A nonempty subset 6 of a D-poset 3 is said to be a sub-D-poset of 3 if :

(S1) 13 P 6.
(S2) a, b P 6, a # b, implies b * a P 6.

A sub-D-poset 6 of a D-poset 3 is a sub-D-lattice of 3 if, moreover,
the following holds:

(S3) The supremum a ∨ b and the infimum a ∧ b exist in 6 whenever
a, b P S .

A sub-D-lattice 6 of 3 is a Boolean sub(-s-)algebra of 3 if 6 is the
Boolean (s-) algebra (in the sense of Sikorski [17]) with respect to the lattice
operations ∨ and ∧, and the unary operation 8: a ° a8 :5 13 * a.
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A sub-D-poset 6 of 3 is a Boolean sub-D-poset (or in other terms an
MV-subalgebra) of 3 if there exists an extension of the partial binary operation
* on 6 (denoted by 2) with properties (DL1)–(DL3) and (BD4).

Let 3 and 7 be two D-posets. A mapping w: 3 → 7 is said to be a
D-homomorphism (of D-posets) if :

(DH1) w(13) 5 17.
(DH2) If a, b P 3, a # b, then w(a) # w(b) and w(b * a) 5 w(b) *

w (a).

A D-homomorphism w: 3 → 7 is called a s-D-homomorphism if, moreover,
the following holds:

(DH3) (an)`
n51 # 3, an ; a, and a P P (i.e., an # an11 for any n P

N and a 5 ∨`
n51 an) implies w(an) ; w(a).

The following properties result directly from the definition of a D-
homomorphism w:

(i) w(03) 5 07.
(ii) w(a8) 5 (w(a))8 for any a P 3.

(iii) If a, b P 3, a # b8, then w(a % b) 5 w(a) % w(b).
(iv) If a, b P 3, a # b, then w(b) 5 w(a) % (w(b) * w(a)).
(v) If a, b P 3, a } b, then w(a) } w(b).

If 3 and 7 are Boolean algebras (or orthomodular posets 5 quantum
logics), then a D-homomorphism from 3 to 7 is the same thing as a homomor-
phism of Boolean algebras well known from the classical Boolean algebras
theory (or as a homomorphism of logics known from the quantum logics
theory). But a D-homomorphism of MV-algebras is not the same mapping
as a homomorphism of MV-algebras from the many-valued logics theory.
Indeed, a homomorphism of MV-algebras preserves the binary operation of
the sum of elements, while a D-homomorphism respects only the orthogonal
sum of elements.

The basic notions of the quantum theory are a state (probability measure)
and an observable (a quantum paraphrase of a random variable). We can
define these notions as D-homomorphisms of special D-posets.

A state on 3 is a s-D-homomorphism from a D-poset 3 to the unit
interval [0, 1] with the usual difference of reals.

A s-D-homomorphism x from the s-algebra @(R) of all Borel subsets
of the real line R to a D-poset 3 is called an observable (in 3).

Now we will investigate in more details some properties of observables
in D-posets.

If x is an observable, then there exists the least closed subset s(x) (called
the spectrum of x), such that x (s(x)) 5 13.
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An observable x is said to be (i) simple if s(x) is a finite set, and (ii)
discrete if s(x) is a countable set.

If s(x) 5 {t1, . . . , tn}, then x({ti}) . 03 for any i 5 1,2, . . . , n.
Suppose now that a1 . 03, . . . , an . 03 are elements of 3 such that

%n
i51 ai 5 13 and let t1, . . . , tn be real different numbers. Define x by

x(E ) 5 % {ai: ti P E}, E P @ (R)

Then x is a simple observable such that s(x) 5 {t1, . . . , tn}.
The set 5(x) 5 {x(E ): E P @(R)} is said to be the range of an observable

x. We note that if x is an observable in a s-orthomodular poset +, then the
range 5(x) is always a Boolean sub-s-algebra of +. But the range of an
observable in a D-poset is not a sub-D-poset, in general.

Let x and y be two observables in a D-poset 3. We say that x is
representable by y (or x is y-representable) if there exists a Borel measurable
function f : R → R such that x(E ) 5 y( f21(E )) for any E P @(R).

The following necessary and sufficient conditions for the representation
of observables have been proved by Kôpka and Chovanec [12].

Theorem 3.1 (Representation Theorem). An observable x is representable
by an observable y if and only if there exists a chain }, } # @(R), such that

{x((2`, r)): r P Q} # {y(A): A P }}

where Q is the set of all rationals.

Let x be an observable in a D-poset 3, and 4 be a nonempty subset of
the range 5(x). We say that the observable x has a V-property on 4 if for
every two Borel sets A, B such that A # B and for every element c P 4
such that x(A) # c # x(B) there exists a Borel set C such that x(C ) 5 c and
A # C # B.

Now we give a sufficient condition for the representation of observables.

Proposition 3.2 [2]. Let x and y be two observables such that the following
conditions hold:

(i) 5(x) # 5( y).
(ii) The observable y has the V-property on 5(x).
Then the observable x is y-representable.

Proposition 3.3. If an observable x in a D-poset 3 has the V-property
on its range 5(x), then 5(x) is a sub-D-poset of 3. Moreover, if 5(x) is a
lattice, then 5(x) is a Boolean sub-D-poset (MV-subalgebra) of 3.

Proof. It is clear that 13 5 x(R) P 5(x).
Let x(E ), x(F ) P 5(x) such that x(E ) # x(F ). The inequalities x(E ) #

x(F ) # x(E ø F ) and the V-property of x imply the existence of a set F1 P
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@(R) such that E # F1 # E ø F and x(F1) 5 x(F ). Then x(F ) * x(E ) 5
x(F1) * x(E ) 5 x(F1 \E ) P 5(x) and so 5(x) is a sub-D-poset of 3.

The range of any observable is a set of pairwise compatible elements.
If 5(x) is a lattice, then it is a D-lattice of pairwise compatible elements,
which is a Boolean D-poset. n

We say that an observable x is regular if the inequality x(E ) # x(E )8
implies x(E ) 5 03.

Theorem 3.4. Let x be an observable in a D-poset 3. The following
assertions are equivalent:

(i) x is regular.
(ii) 5(x) is a Boolean subalgebra of 3.

(iii) If A, B P @(R), x(A) # x(B), then x (A ø B) 5 x(B) and x (A ù
B) 5 x(A).

Proof. The implication (i) ⇒ (ii) was proved by Dvurečenskij and
Pulmannová [6].

The implication (ii) ⇒ (iii) is true because x(A ø B) 5 x(A) ∨ x(B) for
any regular observable x.

Let (iii) hold. If x(A) # x(A)8 5 x(Ac), then x(A) 5 x(A ù Ac) 5 x(0⁄ )
5 03, which gives that x is regular. n

Corollary 3.5. Let x be a regular observable in a D-poset 3. Then:

(i) x(A) 5 x(B) if and only if x(A ø B) 5 x(A ù B).
(ii) If A ù B 5 0⁄ and x(A) 5 x(B), then x(A) 5 03 5 x(B).

(iii) The observable x has the V-property on 5(x).

4. JOINT OBSERVABLES IN D-POSETS

The notion of a joint observable is a quantum paraphrase of the notion
of a random vector. Joint observables play an important role in solving some
problems from the probability theory on non-Boolean structures. Results of
probability theory on D-posets and MV-algebras can be found in refs. 11,
13, and 16.

If 3 is a D-poset and x, y are observables in 3, then by a joint observable
of x and y we mean a s-D-homomorphism w: @(R2) → 3 such that w(E 3
R) 5 x(E ) and w(R 3 F ) 5 y(F ) for every E, F P @(R).

We note that a joint observable in quantum logics exists only for compati-
ble observables. [The observables x and y are compatible if x(E ) } y(F ) for
every E, F P @(R).] Indeed, the compatibility of x and y implies the existence
of real-valued Borel-measurable functions f, g and an observable w such that
x 5 w + f21 and y 5 w + g21. Let a mapping h: R → R2 be defined by the
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equality h(t) 5 ( f(t), g(t)) for any t P R. Then a s-homomorphism z from
@(R2) into a quantum logic such that z(A) 5 w(h21(A)) for every A P @(R2)
is a joint observable of x and y.

We recall that a joint observable in quantum logics does not depend on
the choice of functions f and g.

Now we will investigate joint observables in Boolean D-poset because
here all elements are pairwise compatible.

First we present some basic notions.
A nonzero element a from a D-poset 3 is called an atom if the inequality

b # a entails either b 5 03 or b 5 a. A D-poset is said to be atomic if for
any nonzero element b P 3 there exists an atom a P 3 such that a # b.

By a s-complete D-poset we mean a D-poset 3 such that for a countable
sequence {an}`

n51 the least upper bound (∨`
n51 an) (and equivalently the great-

est lower bound ∧`
n51 an) exists in 3.

Let a P 3. We define

na :5 a1 % a2 % ??? % an

where a1 5 a2 5 ??? 5 an 5 a if the corresponding orthogonal sum exists
in 3.

For any element a P 3, ord(a) is defined via

ord(a) 5 sup{n $ 1: na P 3}

In a s-complete Boolean D-poset one has ord(a) , ` for any nonzero
element a [5].

The following theorem is analogous to the Cignoli theorem [4], according
to which any atomic s-complete MV-algebra (Boolean D-poset) can be
expressed as a direct product of finite chains.

Theorem 3.6 [5]. Let {a1, a2, . . . , an , . . .} be a countable system of all
atoms in an atomic s-complete Boolean D-poset 3 and ord(an) 5 kn for any
n 5 1,2, . . . . Then the following assertions are true:

(i) %`
n51(knan) 5 13.

(ii) For any a P 3 there exist unique integers mn , mn P {0,1, . . . ,
kn}, n 5 1, 2, . . . , such that

a 5 %
`

n51
(mnan)

Theorem 3.7. Let 3 be an atomic s-complete Boolean D-poset with the
countable set {a1, a2, . . . , an , . . .} of all atoms such that ord(an) 5 kn , n 5
1, 2, . . . . Then:

(1) There exists an observable w: @(R) → 3 such that (i) 5(w) 5
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3, (ii) s(w) 5 ø`
n51Wn, where Wn # N, Wi ù Wj 5 0⁄ for i Þ j,

and w(Wn) 5 knan for any n 5 1, 2, . . . , and (iii) w has the V-
property on 5(w).

(2) If x is an observable such that 5(x) 5 3 and x has the V-property
on 5(x), then there exists a bijection w: s(w) → s(x).

(3) An observable y :5 w + f 21 is regular if and only if the partial
functions f/Wn are constant for any n 5 1, 2, . . . .

Proof. (1) Let Wn be a subset of the set of all positive integers N such
that .Wn. 5 kn for n 5 1, 2, . . . , and Wi ù Wj 5 0⁄ for i Þ j, where .Wn.
denotes the cardinality of Wn.

We put W 5 ø`
n51 Wn and denote by 6 a system of all subsets of W.

We now define a mapping h: 6 → 3 by

h(E ) 5 %
`

n51
mn an for any E P 6

where mn 5 .E ù Wn.. Then h is a s-D-homomorphism on 3.
Putting

w(E ) 5 h(E ù X ) for any E P @(R)

we obtain that w is an observable in 3 such that 5(w) 5 3, w(Wn) 5 kn

an , s(w) 5 W, and w has the V-property on 3. A detailed proof of (1) is
given in ref. 5.

(2) From the assumptions (the observables w and x have the V-property)
it follows that there exist Borel-measurable functions f and g such that x 5
w + f21 and w 5 x + g21. From the above we have s(w) 5 ø`

n51 Wn. We
show that the partial functions wn 5 f/Wn , n 5 1, 2, . . . , are bijections. The
sets Wn are finite, so the images f(Wn) are finite, too, and . f (Wn). # .Wn..
We prove that . f (Wn). 5 .Wn. for any n P N.

Let . f (Wn). , .Wn.. Then there exist t1, t2 P Wn such that f (t1) 5 f (t2) 5
s P s(x) and

x({s}) 5 w( f 21({s})) $ w(({t1, t2}) 5 an % an 5 2an

For any t P Wn

an 5 w({t}) 5 x(g21 ({t}))

From the inequalities 03 , x(g21({t})) 5 an , 2an , x({s}) and the V-
property of x it follows that there exists A P @(R) such that 0⁄ # A # {s}
and x(A) 5 an. Then either A 5 0⁄ or A 5 {s}. Both eventualities lead to
conflict. So, . f (Wn). 5 .Wn.. Then the mappings wn: tni ° f (tni), i 5 1, . . . ,
kn, are bijections from Wn onto f (Wn) for any n 5 1, 2, . . . . It suffices to
put w :5 f/W.
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(3) Let f be a Borel-measurable real function and let the observable y 5
w + f 21 be regular. Then 5( y) is a Boolean subalgebra of 3.

Let t1, t2 P Wn , t1 Þ t2, and f (t1) 5 s1 Þ s2 5 f (t2). Then t2 ¸ f 21({s1})
and . f 21({s1}) ù Wn. , .Wn., so an # w( f 21({s1}) ù Wn) , knan.

We have an # w( f 21({s1}) ù Wn) # a8n and also (w( f 21({s1}) ù Wn))8
# a8n; therefore, 13 5 w( f 21({s1}) ù Wn) ∨ (w( f 21({s1}) ù Wn))8 # a8n,
which gives an 5 03. This is the conflict with the assumption that an is an
atom. Therefore f/Wn is the constant function for any n P N.

Now let f (t) 5 sn for any t P Wn , n 5 1,2, . . . , and let A P @(R),
A Þ 0⁄ , y(A) . 03, y(A) # ( y(A))8.

There are four possibilities:

(a) f 21(A) 5 0⁄ .
(b) f 21(A) 5 ø`

n51 Wn 5 W.
(c) f 21(A) 5 øjp

n5j1 Wn , j1, . . . , jp P {1,2, . . .}.
(d) f21(A) 5 ønPT Wn , T 5 N \{ j1, . . . , jp}.

In case (a) we have y(A) 5 w( f 21(A)) 5 w(0⁄ ) 5 03, which conflicts
with the assumption y(A) . 03.

In case (b) we have y(A) 5 w( f 21(A)) 5 w(W ) 5 13 and then ( y(A))8
5 03, which conflicts with the assumption y(A) # ( y(A))8.

Let (c) hold. Denote by bji 5 kji aji, i 5 1, . . . , p. Then

y(A) 5 w( f 21(A)) 5 w1ø
jp

n5j1

Wn2
5 bj1 % bj2 % . . . % bjp

5 bj1 ∨ bj2 ∨ . . . ∨ bjp

and

( y(A))8 5 b8j1 ∧ b8j2 ∧ . . . ∧ b8jp

The inequalities

kj1 aj1 5 bj1 # y(A) # ( y(A))8 # (bj1)8 # (aj1)8

imply that the orthogonal sum (kj1 aj1) % aj1 exists and

(kj1 aj1) % aj1 5 (kj1 1 1)aj1

which conflicts with the assumption ord(aj1) 5 kj1.
Similarly we get conflict in case (d).
Therefore, for any A P @(R) such that y(A) # ( y(A))8 we have y(A) 5

03, which gives that the observable y is regular. n
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Theorem 3.8. For any two regular observables in an atomic s-complete
Boolean D-poset with the countable set {a1, a2, . . .} of all atoms there exists
a joint observable.

Proof. By Theorem 3.7 there exists an observable w such that 5(w) 5
3, s(w) 5 W 5 ø`

n51 Wn and w has the V-property on 3. Then the observables
x and y are w-representable, that is, x 5 w + f 21 and y 5 w + g21 and the
functions f/Wn , g/Wn , n 5 1, 2, . . . , are constant. It is easy to verify that
the functions f/W and g/W are defined uniquely. According to classical quan-
tum logics theory, we define a mapping h: R → R2, h(t) 5 ( f(t), g(t)) for
any t P R. Then a mapping z from @(R2) into 3 such that z(A) 5 w(h21(A))
for every A P @(R2) is a joint observable of x and y. n
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