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In this paper the conditions for D-posets to become orthoalgebras, orthomodular
posets, orthomodular lattices, MV-agebras, and Boolean algebras are presented.
Also some properties of observables are investigated. It is proved that any two
regular observables in an atomic o-complete Boolean D-poset have a joint
observable.

1. INTRODUCTION

Based on the study of unsharp logics, fuzzy systems, and quantum
mechanical systems, new algebraic structures have been proposed as their
models. In weak orthoa gebras introduced by Giuntini and Greuling [10] and
in effect algebras introduced by Foulis and Bennet [8] a primary operation
is apartialy defined sum. In difference posets (D-posets) defined by Kdpka
and Chovanec [12] a primary operation is a partially defined difference.

In the first part of this paper we describe some agebraic structures in
terms of difference posets. We will study some properties of D-homomor-
phisms, especially observables, and we will characterize their ranges from
the point of view of substructures of D-posets. Finally, we prove that any two
observablesin an atomic o-compl ete Bool ean D-poset have ajoint observable.

2. D-POSETS AND SOME ALGEBRAIC STRUCTURES

Let (P, =) be a nonempty partially ordered set (poset). Let © be a
partial binary operation on % such that b © a is defined if and only if a <
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b. Then © iscalled adifference on % if the following conditions are satisfied:

(D) boa=h

(D2) bo (b a) =a

(D3) Ifa=b=cthencOb=cSaand(c©aO(cObh=
bo a

In this article we investigate the bounded posets. A poset (P, =) that
possesses the greatest element 1, with a difference on & is said to be a D-
poset (difference poset). The properties of D-posets are treated in many
articles. See, for example, refs. 3 and 12.

In the following we need the next assertion.

Proposition 2.1. Let  be a D-poset. Let a, b, c, e #,a, =c,b=c.
If there exists a supremum a O b in %, then there exists the infimum (c ©
a0ccobin?Pandco (allb) =(coa U(cOb).

Proof. The inequalitiesa<=alOb=candb=aOb = cimply
cO(aldb)=cOa, cO©(@alby=cohb
Letde ?,d=cS ad=cOb. Then
a=co(ca=cod, b=cS(c©b=cod
Thereforea0b=cSd=cadd=cOS (alh). =

An orthoalgebra O [7, 9] is a set containing two special elements 0, 1
and equipped with a partialy defined binary operation & subject to the
following conditions for al a, b, c € O:

(OAl1l) If ab bisdefined, thenb @ aisdefinedanda® b =b D
a (commutativity).

(OA2) If b® cisdefined and a® (b D c) is defined, thena ® b is
defined, (a b) ® cisdefined,anda® (b c) = (a D b)
@ c (associativity).

(OA3) Forany a e O thereexistsauniqueb € O suchthat a® b is
defined and a © b = 1 (orthocomplementation).

(OA4) If a ais defined, then a = 0O (consistency).

The partial ordering on O is defined as follows: a = b if and only if
thereexistsc € O suchthat a® cisdefinedanda® c=b. Then0=a=
1 holds for @l a € 0. The unique element b € O suchthata® b = 1is
denoted by a’ and is called the orthocomplement of a; moreover, a ® b is
defined if and only if a = b’.

The difference on an orthoalgebra is defined by
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boa=(@®db) for aabe0, a<b

and thus every orthoalgebra forms a D-poset [12]. Even though we can define
a partial binary operation & on any D-poset % by

adb="1,90((lx0ah=L0((1l©bCSa

fora, b e ?,a= 13 © b, ? need not be an orthoalgebra.
We say that aD-poset isregular [14] if it satisfiesthe following condition:

(R lfae Panda= 1; © a, thena = 0.
The condition (R) of a D-poset implies the following assertion.

Proposition 2.2. Let % be aregular D-poset. ThenaDa’' = 1y anda
a =0y fordlace® wherea ;= 13 © a.

Proof. Letg,a’ =c.Ptd=c©aandb=a ©d Thend=a' =
candb=a =cNow, b=(1,0aO0(CSa=1,0c=10h
From the regularity it followsthat b = 0z. Thusd = a' = 13 © a,i.e, c©
a = 1 © a, which impliesc = 1. Findly, we have 0 = 13 = (ada’)’
=a' la =m

The corollary of the previous proposition is the following assertion: If
aD-poset % isregular and a = b’ (which isequivalentto b = a’), thenad
b = Ogs.

From the above, the following theorem is true:

Theorem 2.3. A D-poset % is an orthoalgebra if and only if % is a
regular D-poset.

An orthomodular poset [15, 18] is a partially ordered set (£, <) with
the least and greatest elements 0, 1, endowed with a unary operation ’, so-
called orthocomplementation, such that:

(OMP1) &’ = aforany a e &.

(OMP2) a = bimpliesb’ = a'.

(OMP3) a = b" impliesab e £.
(OMP4) aOa = 1forany a € <.
(OMP5) a = bimpliesb = a O (b Oa&).

Any orthomodular poset can be regarded as an orthoalgebra by defining
a® b:= alb, precisaly, in the case a = b. Conversely, an orthoalgebra
O is an orthomodular poset if a b € O whenevera=b'anda® b =all
b [9].

Any orthomodular poset can be organized as a D-poset, defining b ©
a=b0a, fora=bh. Thusaregular D-poset % is an orthomodular poset
if and only if for every a, b € ?, a = b/, their supremum a O b existsin %.
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Now we give a sufficient and necessary condition for the difference
operation on a D-poset % to become an orthomodular poset.

Theorem 2.4. A D-poset % is an orthomodular poset if and only if the
following condition is satisfied.

(SR) Ifabe Psuchthaaa=Db anda,b=c, thenb=c©S a (or
equivalently a < c © h).

Proof. Let % be an orthomodular poset. If a, b, ¢ € % such that a =
b’ and a, b = ¢, then from the orthomodularity we have b’ = a 00 (b’ O &').
Thenb=a O(@Ob)=a Oc=cOSa

It is easy to see that the regularity follows from the condition (SR). Let
a=10b. Thena® b= 1, © ((1» © b) © a) is an upper bound of the
dementsa, b. If a, b = ¢, then by (SR), b = ¢ © a, and so

Leog=(LoaoO(cLa)=1o(cCa)ba=(lL,LOboa
Therefore,

Lo(ly,Ehoa=1,L61;©c)=c
Thusa® b=alb =

A D-poset & which is also a lattice with respect to the order relation
= is caled a D-lattice. Then there is a total binary operation — on %, b —
a =: b © (a Ob), such that the following properties hold:

(DL1) a— 03 = aforanya e .

(DL2) a,be P, a=Dbimpliesc—b=c—aforanyc e %.
(DL3) a—(@a—b)y=b—(b—a) foreverya, b e .
(DL4) a=b=cimplies(c—a —-(c—b =b—-a

Conversaly, if P is a poset with the least element 0; and the greatest
element 15 and — isabinary operation on % with the properties(DL1)—(DL4),
then % is a D-lattice [3].

Orthomodular poset (£, =, 0, 1, ') is called an orthomodular lattice if
it is a lattice with respect to =.

Any orthomodular lattice & is a D-lattice whereb — a = b O (a O b)’
for every a, b € &. A D-lattice is not an orthomodular lattice in general.

Theorem 2.5. A D-lattice is an orthomodular lattice if and only if it
is regular.

Proof. It is clear that every orthomodular lattice is a regular D-lattice.
Let a D-lattice % be regular. It sufficesto provethat fora, b € ?,a=
b,a+b:=1; — (1 —b) —a =alh.



Difference Posets in the Quantum Structures Background 575

Evidently 1, — ((1 — b) — a) = aOb = a, b. By Proposition 2.1
we have

(I = ((1p —b) —a) — (alb)
=1y —(1p —b)—a) b I((1y — (1» —a) — b) — a)
(Ip —b) — ((1y —b) — ) (s — &) — (1» — &) — b))
=alb
Then (by Proposition22) a+ b =13, — (1 —b) —a) =alb. =
A poset P with the least element 05 and the greatest element 1, is said

to be a Boolean D-poset if there is a binary operation — on % satisfying the
conditions (DL1)—(DL3) and the following condition:

(BD4) (c—b)—a=(c—a) — bforeverya, b, c e P.

We say that two elements a, b of a D-poset % are compatible, and write
a < b, if there exist elementsc,d e #, d =a =c, d = b = ¢, such that
cOa=bod(orequivaently cS b = ao d). Thisnotion of compatibility
is equivalent to the standard definitions of compatibility in the orthomodular
posets. We can characterize every Boolean D-poset as a D-lattice of pairwise
compatible elements. Also, we know that every Boolean D-poset is an MV-
algebra and, conversely, every MV-algebra is a Boolean D-poset [3].

Theorem 2.6. A Boolean D-poset % is a Boolean algebra if and only if
% is regular.

Proof. The proof of the previous assertion follows from the fact that in
aregular MV-algebra, ala’ = 1foreveryae P [1]. =

3. D-HOMOMORPHISM S OF D-POSETS
A nonempty subset & of a D-poset % is said to be a sub-D-poset of P if :

(S2)a,be J,a=sbh, impliesbhS ace ¥.

A sub-D-poset & of a D-poset P is a sub-D-lattice of % if, moreover,
the following holds:

(S3) The supremum a O b and the infimum a [0 b exist in & whenever
abesS.

A sub-D-lattice ¥ of % is a Boolean sub(-c-)algebra of ? if & is the
Boolean (o-) algebra (in the sense of Sikorski [17]) with respect to the lattice
operations O and [, and the unary operation ': a+— a' := 15 © a.
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A sub-D-poset & of % is a Boolean sub-D-poset (or in other terms an
MV-subalgebra) of % if there existsan extension of the partial binary operation
© on ¥ (denoted by —) with properties (DL1)—(DL3) and (BD4).

Let # and J be two D-posets. A mapping w: & — J issaid to be a
D-homomor phism (of D-posets) if:

(DH2) Ifa b e ®, a=b, thenw@) = w(b) and w(b © a) = w(b) ©
w (a).

A D-homomorphismw: # — 7 iscaled ao-D-homomorphismif, moreover,
the following holds:

(DH3) (a)h-1 C P, a, #a,anda e P(i.e,a,=<a,;foranyn e
N and a = 0=, a,) impliesw(a,) 7 w(a).

The following properties result directly from the definition of a D-
homomorphism w:

(i) w(0y) = 05

(i) w@) = (w@)’ forany a € P?.
@iii) Ifabe ® a=b,thenw(@® b) = w(@ D w(b).
(iv) Ifa, be ® a=hb,thenwb) = w(@) & (wb) © w(a)).
(V) Ifa be P, ae b, then w(a) <« w(b).

If % and J are Boolean algebras (or orthomodular posets = quantum
logics), then aD-homomorphismfrom % to I isthe samething asahomomor-
phism of Boolean algebras well known from the classical Boolean algebras
theory (or as a homomorphism of logics known from the quantum logics
theory). But a D-homomorphism of MV-algebras is not the same mapping
as a homomorphism of MV-algebras from the many-valued logics theory.
Indeed, a homomorphism of MV-algebras preserves the binary operation of
the sum of elements, while a D-homomorphism respects only the orthogonal
sum of elements.

The basic notions of the quantum theory are a state (probability measure)
and an observable (a quantum paraphrase of a random variable). We can
define these notions as D-homomorphisms of special D-posets.

A state on % is a o-D-homomorphism from a D-poset % to the unit
interval [0, 1] with the usua difference of redls.

A o-D-homomorphism x from the o-algebra %3 (R) of al Borel subsets
of the real line R to a D-poset & is called an observable (in P).

Now we will investigate in more details some properties of observables
in D-posets.

If xisan observable, then there exists the least closed subset o(x) (called
the spectrum of x), such that x (o(X)) = 15.
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An observable x is said to be (i) smple if o(X) is a finite set, and (ii)
discrete if o(X) is a countable set.

If o(X) = {tg, ..., t.}, thenx({t}) > Oy forany i = 1,2, ..., n.

Suppose now that a; > 0y, ..., a, > 0y are elements of % such that
®L,a =1y andletty, ..., t, bereal different numbers. Define x by

XE)=®{a:tcE}, EeB®)

Then x is a simple observable such that o(X) = {ty, ..., t.}.

Theset R(X) = {X(E): E € B(R)} issaid to betherange of an observable
X. We note that if x is an observable in a o-orthomodular poset &, then the
range R(x) is aways a Boolean sub-c-algebra of &. But the range of an
observable in a D-poset is not a sub-D-poset, in general.

Let x and y be two observables in a D-poset . We say that x is
representable by y (or x is y-representable) if there exists a Borel measurable
function f: R - R such that X(E) = y(f"¥E)) for any E € B(R).

The following necessary and sufficient conditions for the representation
of observables have been proved by Képka and Chovanec [12].

Theorem 3.1 (Representation Theorem). An observable x isrepresentable
by an observabley if and only if there exists achain Jt, A C B(R), such that

{x((—o=, 1)1 e Q} C{y(A): A e M}
where Q is the set of all rationals.

Let x be an observable in a D-poset %, and 2 be a nonempty subset of
the range %(x). We say that the observable x has a V-property on 2 if for
every two Bord sets A, B such that A C B and for every element c € 9
such that x(A) = ¢ = x(B) there exists a Borel set C such that x(C) = ¢ and
ACCCB.

Now we give a sufficient condition for the representation of observables.

Proposition 3.2[2]. Let xand y betwo observables such that thefollowing
conditions hold:

(i) R(x) C R(Y).

(ii) The observable y has the V-property on R(X).

Then the observable x is y-representable.

Proposition 3.3. If an observable x in a D-poset % has the V-property
on its range R(x), then R(x) is a sub-D-poset of . Moreover, if R(X) is a
lattice, then R(X) is a Boolean sub-D-poset (MV-subalgebra) of %.

Proof. It is clear that 13 = X(R) € R(X).
Let X(E), X(F) e %R(x) such that x(E) = x(F). The inequalities x(E) =
X(F) = X(E U F) and the V-property of x imply the existence of aset F, e
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B(R) suchthat E C F; C E U F and x(F,) = x(F). Then x(F) © X(E) =
X(F1) © X(E) = x(F{\E) € R(x) and so R(X) is a sub-D-poset of P.

The range of any observable is a set of pairwise compatible elements.
If R(X) is a lattice, then it is a D-lattice of pairwise compatible elements,
which is a Boolean D-poset. =

We say that an observable x is regular if the inequality X(E) = x(E)’
implies X(E) = 0.

Theorem 3.4. Let x be an observable in a D-poset %. The following
assertions are equivalent:

(i) x is regular.
(ii) R(X) is a Boolean subalgebra of %.
(iii) If A, B € B(R), x(A) = x(B), then x (A U B) = x(B) and x (A N
B) = x(A).

Proof. The implication (i) O (ii) was proved by DvureCenskij and
Pulmannova [6].

The implication (ii) O (iii) is true because x(A U B) = x(A) O x(B) for
any regular observable x.

Let (iii) hold. If x(A) = x(A)" = X(A%), then X(A) = x(A N A°) = x(0)
= 0y, which gives that x isregular. =

Corollary 3.5. Let x be aregular observable in a D-poset %. Then:

(i) x(A) = x(B) if and only if X(A U B) = x(A N B).
(i) If AN B = 0 and x(A) = x(B), then x(A) = 03 = x(B).
(iii) The observable x has the V-property on R(X).

4. JOINT OBSERVABLESIN D-POSETS

The notion of a joint observable is a quantum paraphrase of the notion
of arandom vector. Joint observables play an important role in solving some
problems from the probability theory on non-Boolean structures. Results of
probability theory on D-posets and MV-algebras can be found in refs. 11,
13, and 16.

If ? isaD-poset and x, y are observablesin P, then by ajoint observable
of x and y we mean a o-D-homomorphism w: B(R?) - % such that w(E X
R) = x(E) and W(R X F) = y(F) for every E, F € B(R).

We notethat ajoint observablein quantum logics exists only for compati-
ble observables. [The observables x and y are compatible if X(E) < y(F) for
every E, F € B(R).] Indeed, the compatibility of x and y impliesthe existence
of real-valued Borel-measurable functions f, g and an observable w such that
x=weoflandy = weo gl Let amapping h: R - R? be defined by the
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equality h(t) = (f(t), g(t)) for any t € R. Then a o-homomorphism z from
9B(R?) into a quantum logic such that z(A) = w(h~(A)) for every A e B(R?)
is ajoint observable of x and y.

We recall that ajoint observable in quantum logics does not depend on
the choice of functions f and g.

Now we will investigate joint observables in Boolean D-poset because
here al elements are pairwise compatible.

First we present some basic notions.

A nonzero element a from aD-poset % is called an atom if theinequality
b = a entails either b = 03 or b = a. A D-poset is said to be atomic if for
any nonzero element b € % there exists an atom a € % such that a =< b.

By ao-complete D-poset we mean a D-poset % such that for acountable
sequence { a,} n-1 the least upper bound (-, a,) (and equivalently the great-
est lower bound [(F-, a,) existsin %.

Let a € . We define

nn:=a®a® - Da,

wherea; = a, = --- = a, = a if the corresponding orthogona sum exists
in .
For any element a € P, ord(a) is defined via

ord(a) = sup{n = 1: na € P}

In a o-complete Boolean D-poset one has ord(a) < co for any nonzero
element a [5].

Thefollowing theorem isanal ogousto the Cignoli theorem [4], according
to which any atomic o-complete MV-algebra (Boolean D-poset) can be
expressed as a direct product of finite chains.

Theorem 3.6 [5]. Let {a;, @, . .., &,, . . .} be acountable system of all
atoms in an atomic o-complete Boolean D-poset % and ord(a,) = k, for any
n =12 .... Then the following assertions are true:

(i) Dra(kean) = Lo
(i) For any a e % there exist unique integers m,, m, € {0,1, ...,
ki, n=12 ..., suchtha

a= nGjl(mnan)

Theorem 3.7. Let % be an atomic o-complete Boolean D-poset with the
countable set {ay, ay, . .., a,, .. .} of al atoms such that ord(a,) = k,, n =
1,2, .... Then:

(1) There exists an observable w: B(R) - % such that (i) R(w) =
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P, (ii) o(w) = Up=qW,, where W, C N, W N'W, = Dfori # j,
and w(W,) = k,a, forany n = 1, 2, ..., and (iii) w has the V-
property on R(w).

(2) If xisan observable such that R(x) = % and x has the V-property
on R(x), then there exists a bijection ¢: a(W) - o(X).

(3) An observabley := w o f~1isregular if and only if the partia
functions f/W, are constant forany n =1, 2, ....

Proof. (1) Let W, be a subset of the set of all positive integers N such
that |W,| = k,forn=1,2,...,and W N W, = 0 for i # j, where |W,|
denotes the cardinality of W,

We put W = Uj_; W, and denote by & a system of al subsets of W.

We now define a mapping h: ¥ - % by

h(E)=émnan forany Ee &
n=1

where m, = |E N W,|. Then h is a o-D-homomorphism on %.
Putting

W(E) = h(E N X) forany E e B(R)

we obtain that w is an observable in ? such that R(w) = P, w(W,) = k,
a,, o(w) = W, and w has the V-property on %. A detailed proof of (1) is
givenin ref. 5.

(2) From the assumptions (the observables w and x have the V-property)
it follows that there exist Borel-measurable functions f and g such that x =
we f"land w = x o g~*. From the above we have o(w) = Uy, W,. We
show that the partial functions ¢, = f/\W,,n =1, 2, ..., are hijections. The
sets W, are finite, so the images f(W,) are finite, too, and |f(W,)| = |W,|.
We prove that | f(W,)| = |W,| for any n e N.

Let [f(W,)| < |W,|. Then thereexist t;, t, € W, such that f(t;) = f(ty) =
s € o(x) and

x({sh) = w(f~({s})) = w(({ts, tz}) = 8, @ a, = 2a,
Foranyt e W,

a = w({t}) = x(g7* ({1})

From the inequalities 0, < x(g~*({t})) = a, < 2a, < x({s}) and the V-
property of x it follows that there exists A € B(R) such that 8 C A C {s}
and x(A) = a,. Then either A = 0 or A = {s}. Both eventudlities lead to
conflict. So, | f(Wy)| = |Wi|. Then the mappings ¢, ty, — f(t,), i =1,...,
k., are bijections from W,, onto f(W,) forany n = 1, 2, .... It suffices to
put ¢ := f/W.
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(3) Let f be a Borel-measurable real function and let the observabley =
w o f~1 be regular. Then R(y) is a Boolean subalgebra of %.

Letty, t, e Wy, t1 # th,and f(t) = s, # S, = f(t). Thent, ¢ f1({s})
and |fH({s}) N Wl < Wi, 508, = w(fX({s}) N W) < ke,

We have a, = w(f~({si}) N W) = a; and also (W(f ~({si}) N W)’
= ay therefore, 1y = w(f*({s}) N W) OW(f*({s}) N Wy)" = ay,
which gives a, = 05. This is the conflict with the assumption that a, is an
atom. Therefore f/W, is the constant function for any n € N.

Now let f(t) = s, foranyt e Wy, n =12, ..., and let A € B(R),
A+ 0, ¥(A) > 0z, Y(A) = (Y(A)"

There are four possibilities:

@ YA =2

() fA) = Uy Wy = W.

(© XA = Uy, Wo ju ... Jp e {12, ).
(d) f_l(A) = UHET Wna T= N\{Jli LI 1Jp}'

In case (a) we have y(A) = w(f 1(A)) = w(@) = 05, which conflicts
with the assumption y(A) > 0.

In case (b) we have y(A) = w(f 1(A)) = w(W) = 1, and then (y(A))’
= 0y, which conflicts with the assumption y(A) = (y(A))'.

Let (c) hold. Denote by b, = k; &, i = 1,...,p. Then

ip
y(A) = w(f(A) = W(U Wn)

n=j1

=b,®b,D...0Db,

=b,0b,0...0b
and

(YA)' = Db, 0b,0...0bj
The inequalities
ki, a;, = b, = y(A) = (YA) = (b)) = (&)
imply that the orthogonal sum (k;, &) @ &, exists and
(k, &) @ &, = (k, + D&y,
which conflicts with the assumption ord(g;,) = k;,.
Similarly we get conflict in case (d).

Therefore, for any A € B(R) such that y(A) = (y(A))’ we have y(A) =
0z, which gives that the observable y isregular. m
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Theorem 3.8. For any two regular observables in an atomic o-complete
Boolean D-poset with the countable set {ay, a,, . . .} of al atoms there exists
ajoint observable.

Proof. By Theorem 3.7 there exists an observable w such that R (w) =
P, o(w) = W= Up-; W, and w hasthe V-property on . Then the observables
x and y are w-representable, that is, x = weflandy = we g~ and the
functions f/\W,, g/W,, n = 1, 2, ..., are constant. It is easy to verify that
the functions f/W and g/W are defined uniquely. According to classical quan-
tum logics theory, we define a mapping h: R - R?, h(t) = (f(t), g(t)) for
any t e R. Then amapping z from B(R?) into % such that z(A) = w(h~(A))
for every A € B(R?) isajoint observable of x andy. =
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